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We investigate the problem of automatically labelling appearances of characters in TV or film material
with their names. This is tremendously challenging due to the huge variation in imaged appearance of
each character and the weakness and ambiguity of available annotation. However, we demonstrate that
high precision can be achieved by combining multiple sources of information, both visual and textual.
The principal novelties that we introduce are: (i) automatic generation of time stamped character anno-
tation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying
when characters are speaking. In addition, we incorporate complementary cues of face matching and
clothing matching to propose common annotations for face tracks, and consider choices of classifier
which can potentially correct errors made in the automatic extraction of training data from the weak tex-
tual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction gives us sufficient annotated data from which to learn to recognize
The objective of this work is to label television or movie footage
with the names of the people present in each frame of the video. As
has previously been noted [1,2] such material is extremely chal-
lenging visually as characters exhibit significant variation in their
imaged appearance due to changes in scale, pose, lighting, expres-
sions, hair style, etc. There are additional problems of poor image
quality and motion blur.

We build on previous approaches which have matched frontal
faces in order to ‘‘discover cast lists” in movies [3] or retrieve shots
in a video containing a particular character [1,4] based on image
queries. The main novelty we bring is to employ readily available
textual annotation for TV and movie footage, in the form of subti-
tles and transcripts, to automatically assign the correct name to
each face image.

Alone, neither the script nor the subtitles contain the required
information to label the identity of the people in the video – the
subtitles record what is said, but not by whom, whereas the script
records who says what, but not when. However, by automatic
alignment of the two sources, it is possible to extract who says
what and when. Knowledge that a character is speaking then gives
a very weak cue that the person may be visible in the video. A key
to the success of our method is the novel use of visual speaker
detection to leverage cues from the text – visually detecting which
(if any) character in the video corresponds to the speaker. This
ll rights reserved.
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the other instances of the character.
In addition to effective exploitation of cues from textual anno-

tation, success depends on robust computer vision methods for
face processing in video. We propose extensions to our method
for connecting faces in video [4], which provides robust face tracks,
and a novel extension of the ‘‘pictorial structure” method [5] which
gives reliable localization of facial features in presence of signifi-
cant pose variations. This paper is an extended version of [11].

1.1. Related work

Previous work on the recognition of characters in TV or movies
has often ignored the availability of textual annotation. In the ‘‘cast
list discovery” problem [3,6], faces are clustered by appearance,
aiming to collect all faces of a particular character into a few pure
clusters (ideally one), which must then be assigned a name manu-
ally. It remains a challenging task to obtain a small number of clus-
ters per character without merging multiple characters into a
single cluster. Other work [2] has addressed finding particular
characters specified a priori by building a model of a character’s
appearance from user-provided training data, and efficient retrie-
val of characters based on example face images [4].

Assigning names given a combination of faces and textual anno-
tation has similarities to the ‘‘Faces in the News” labelling of [7]. In
that work, faces appearing in images accompanying news stories
are tagged with names by making use of the names appearing in
the news story text. A clustering approach is taken, initialized by
cases for which the news story contains a single name and the
accompanying image contains a single (detected) face. Here we
are also faced with similar problems in establishing the correspon-
dence between text and faces: ambiguity can arise from deficien-
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cies in the face detection, e.g., there may be several characters in a
frame but not all their faces are detected, or there may be false po-
sitive detections; ambiguity can also arise from the annotation,
e.g., in a reaction shot the person speaking (and therefore generat-
ing a subtitle) may not be shown.

The combination of face detection and text has also been ap-
plied previously to face recognition in video. In [8], transcripts
(spoken text without the identity of the speaker) and video of news
footage were combined to recognize faces. Much attention was di-
rected at how to predict from a name appearing in the transcript
(typically spoken by a news anchor-person) when (relatively) the
person referred to might appear in the video; addition of a stan-
dard face recognition method to this information gave small
improvements in accuracy. A recent related approach [9] explicitly
restricts the search region of video using the occurrence of a name
in the transcript, then applies a clustering approach to find the
most-frequently occurring face in that region. A limitation of this
approach is that it cannot find a person in parts of the video where
their name is not mentioned. A method similar in spirit [10] ap-
plies multiple-instance learning instead of a clustering approach.
That work also requires that the correct name be among candidates
for any particular clip of video, and is further restricted to ‘‘mono-
logue” news clips containing a single face.

1.2. Outline

Our method comprises three threads:

(i) Section 2 describes the processing of subtitles and script to
obtain proposals for the names of the characters in the video.
Mining useful information from each source requires the
alignment of the two texts, achieved using a dynamic time
warping algorithm.

(ii) Section 3 describes the processing of the video to extract
face tracks and accompanying descriptors of face and cloth-
ing. As in some previous work in this area [1,3,4] we main-
tain multiple examples of a person’s appearance to cover
changes in, e.g., expression and clothing. Robustness to pose,
lighting and expression variation in the description of the
facial appearance is obtained by localizing facial features
and using a parts-based descriptor extracted around the fea-
tures. We also describe the visual speaker detection method
which is pivotal in improving the strength of the supervisory
information available from the text.

(iii) Section 4 describes the combination of the textual and visual
information to assign names to detected faces in the video.
Two classification approaches are considered: a ‘‘nearest
neighbour” approach [11] which bases classification directly
on exemplars extracted by speaker detection, and a support
vector machine (SVM) classifier which can potentially cor-
rect errors made in speaker detection and prune unhelpful
00:18:55,453 --> 00:18:56,086
Get out!

00:18:56,093 --> 00:19:00,044
- But, babe, this is where I belong.
- Out! I mean it.

00:19:00,133 --> 00:19:03,808
I've been doing a lot of reading,
and I'm in control of my own power now,...

00:19:03,893 --> 00:19:05,884
..so we're through.

Fig. 1. Alignment of the subtitles (left) and script (right). The subtitles contain spoken lin
speaker identity but no timing information. Alignment of the spoken text allows subtitle
subtitles, and lines spoken by several characters merged into a single subtitle. The trans
exemplars with poor appearance. Results of the method
are reported in Section 5, and further discussion presented
in Section 6. Section 7 offers conclusions and proposes direc-
tions for future research.

The method is illustrated on three 40 minute episodes of the TV
serial ‘‘Buffy the Vampire Slayer”. The episodes are ‘‘Real Me” (sea-
son 5, episode 2), ‘‘No Place Like Home” (season 5, episode 5), and
‘‘Blood Ties” (season 5, episode 13). In all cases there is a principal
cast of 12 characters and various others, including vampires (who
are detected by the face detector).

2. Subtitle and script processing

In order to associate names with characters detected in the video,
we use two sources of textual annotation of the video which are eas-
ily obtained without further manual intervention: (i) subtitles asso-
ciated with the video intended for hearing-impaired viewers; (ii) a
transcript of the spoken lines in the video. Our aim here is to extract
an initial prediction of who appears in the video, and when.

2.1. Subtitle extraction

The source video used in the experiments reported here was ob-
tained in DVD format, which includes subtitles stored as bitmap
images with lossless compression, and corresponding timing infor-
mation. The subtitle text and time-stamps (Fig. 1) were extracted
using the publicly available ‘‘SubRip” program [12] which uses a
simple table lookup OCR method. Typically the extracted text con-
tains some errors, mainly due to (i) incorrect word segmentation
caused by variable length spacing between characters, and (ii)
characters indistinguishable in the sans-serif font used without
the use of context – primarily ‘‘l” and ‘‘I”. An off-the-shelf spelling
correction program was used to reduce the number of such errors.

Although the video used here was obtained in DVD format, sub-
titles can also be extracted in the same way from digital TV trans-
missions, which encode the subtitles using a similar lossless
bitmap format.

2.2. Script processing

Scripts for the video were obtained from a fan web-site [13]. For
the ‘‘Buffy the Vampire Slayer” footage used here, there are a num-
ber of such fan sites which contain scripts. We stress that for al-
most any movie or TV series it is possible to find the script on
the web, and we expect the text and video processing methods
here to generalize well to other genres of video. Straightforward
text processing was used to extract the identity of the speaker
and corresponding spoken lines from the HTML scripts, by identi-
fying the HTML tags enclosing each script component, for example
the speaker names are identified by bold text.
HARMONY
Get out.

SPIKE
But, baby... This is where I belong.

HARMONY
Out! I mean it. I've done a lot of
reading, and, and I'm in control
of my own power now. So we're
through.

es and exact timing information but no identity. The script contains spoken lines and
s to be tagged with speaker identity. Note that single script lines may be split across
cribed text also differs considerably – note the example shown in italics.
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While the script contains the spoken lines and the correspond-
ing identity of the speaker (Fig. 1), it contains no timing informa-
tion other than the sequence of spoken lines. For example, in
Fig. 1 it is known from the script that the character Harmony
speaks, then Spike, but it is not known to which range of frames
in the video these events correspond. The processed script thus
gives us one of the pieces of information we require: who is speak-
ing; the knowledge that someone is speaking will be used as a cue
that they may be visible in the video. However, it lacks information
of when they are speaking. By aligning the script and subtitles on
the basis of the spoken lines, the two sources of information can
be fused.

2.3. Subtitle and script alignment

Fig. 1 illustrates the alignment of subtitles and script. Note that
the transcription of the spoken lines differs somewhat between the
two sources. Examples include punctuation, e.g., ‘‘Get out!” vs.
‘‘Get out.” and choices or errors made by the transcriber, e.g.,
‘‘I’ve been doing a lot of reading” vs. ‘‘I’ve done a lot of reading”.
In addition, for the purposes of convenient on-screen viewing, sin-
gle script lines may have been split across multiple subtitles, or
lines spoken by different characters merged into a single subtitle.
In order to align the two sources, matching of the spoken lines
must allow for these inconsistencies.

A ‘‘dynamic time warping” [14] algorithm was used to align
the script and subtitles. The two texts are converted into a string
of fixed-case, un-punctuated words to reduce the effect of incon-
sistent casing or punctuation. Writing the subtitle text vertically,
and the script text horizontally, the task is to find a path from
top-left to bottom-right which moves only forward through
either text (since sequence is preserved in the script), and makes
as few moves as possible through unequal words. The globally
optimal alignment, in terms of the number of mismatched
words, is found efficiently using a dynamic programming algo-
rithm. Given such an alignment between words of the subtitle
and script strings, the task remains of transferring the alignment
to the individual elements of each data source – the subtitle
lines, and the script lines. A straightforward voting approach
was used: the script line corresponding to a subtitle line is de-
fined as the line for which the number of words in correspon-
dence, according to the path found by dynamic time warping,
is maximum.

The result of the alignment between subtitles and script is that
each script line can be tagged with timing information from the
subtitles. For example, in Fig. 1 it is now known from the alignment
that the character Harmony speaks from approximately 18 min,
55.5 s to 18 min, 56 s in the video, and the knowledge that she is
speaking for this time gives some clue that she might also be visible
in the corresponding frames of video. Note however, that there will
remain some implicit ambiguities in the alignment due to ambigu-
ity in the two texts. An example appears in the second subtitle
shown in Fig. 1; here, the person producing the subtitles has
merged two spoken lines for convenient on-screen formatting.
Although the alignment algorithm correctly assigns the two lines
to the characters Spike and Harmony, it is not possible to establish
at what time the first line finishes and the second line begins, since
this information is lost by the merging of the lines into a single
subtitle. Possibilities for resolving such ambiguities are discussed
in Section 7.

It transpires that, while knowing that a particular person is
speaking at a given time gives some cue that they may be visible
in the video, this is at best a weak cue. Discussion of the possible
visual ambiguities is deferred to Section 3.5, where a solution is
proposed.
3. Video processing

This section describes the video processing component of
our method. The aim here is to find people in the video and
extract descriptors of their appearance which can be used to
match the same person across different shots of the video.
The task of assigning names to each person found is described
in Section 4.

3.1. Face detection and tracking

The method proposed here uses face detection as the first stage
of processing. A frontal face detector [15] is run on every frame of
the video, and to achieve a low false positive rate, a conservative
threshold on detection confidence is used. The output is a set of
bounding boxes of detected faces for each frame. Example detec-
tions can be seen in Figs. 3a and 12. The use of a frontal face detec-
tor restricts the video content we can label to frontal faces, but
typically gives much greater reliability of detection than is cur-
rently obtainable using multi-view face detection [16]. Methods
for ‘‘person” detection have also been proposed [15,17,18] but
are typically poorly applicable to TV and movie footage since many
shots contain only close-ups or ‘‘head and shoulders” views,
whereas person detection has concentrated on views of the whole
body, for example pedestrians.

A typical episode of a TV series contains around 25,000 detected
faces but these arise from just a few hundred ‘‘tracks” of a partic-
ular character each in a single shot. A face track [4] represents
the appearance of a single character across multiple, not necessar-
ily contiguous, frames of the video. Basing the learning and recog-
nition of people on these tracks rather than individual faces offers
two advantages: (i) the volume of data to be classified is reduced;
(ii) stronger appearance models of a character can be built, since a
single track provides multiple examples of the person’s appear-
ance. Consequently, face tracks are used from here on and define
the granularity of the labelling problem.

Obtaining face tracks requires establishing that two faces in dif-
ferent frames of a shot correspond to the same character. Because a
face track is restricted to a single shot this is a much simpler prob-
lem than the general task of establishing that two face images arise
from the same person, since motion can be used to establish the
correspondence. Face tracks are obtained as follows: first, for each
shot, the Kanade–Lucas–Tomasi (KLT) tracker [19] is applied. This
algorithm detects interest points in the first frame of the shot
and propagates them to succeeding frames based on local appear-
ance matching. Points which cannot reliably be propagated from
one frame to the next are discarded and replaced with new points.
The output is a set of point tracks starting at some frame in the
shot and continuing until some later frame. For a given pair of faces
A and B, in different frames (since faces in a single frame are as-
sumed not to belong to the same character), the relevant point
tracks can be assigned to one of three classes: (a) track intersects
both A and B; (b) track intersects A but not B; (c) track intersects
B but not A. Intersection of a point track and a face is defined by
the point lying within the face bounding box in the corresponding
frame. A confidence measure that the two faces A and B belong to
the same character is then defined as the number of type (a) tracks
divided by the total number of type (b) and (c) tracks – this is the
ratio of tracks linking the faces to tracks which intersect only one
face. Using this confidence measure, defined between every pair
of face detections in the shot, faces are merged into face tracks
by applying a standard agglomerative clustering algorithm. A
threshold on the proportion of intersecting tracks is set to prevent
the clustering algorithm merging unconnected faces; in all experi-
ments this was set to 0.5. Fig. 2 shows examples of face tracks ob-



Fig. 2. Face tracking by point tracking. (a) Eight frames from a sequence of 63 frames where the camera first moves left (frames 0–30) and then stays still (frames 31–62).
Corresponding frame numbers are shown below each frame. Note the changing facial expression of the actor on the left (frames 31–62) and the changing head pose of the
actor on the right (around frame 31). (b) Trajectories of points tracked on the actors’ faces shown as curves in the video volume between the first and last frame. Additional
tracks which do not intersect the faces are omitted for clarity.
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tained for a shot containing significant camera motion and varia-
tion in head pose and facial expression.

This simple tracking procedure is extremely robust. Compared
to an approach of tracking the face directly using some face-spe-
cific or general appearance-based method the point feature-based
approach has two advantages: (i) the method can establish
matches between faces where the face has not been continuously
detected due to pose variation or expression change. This is chal-
lenging for most tracking methods which do not reliably recover
from occlusion; (ii) the method does not suffer from the ‘‘drift”
common in object trackers, where the appearance model main-
tained by the tracker drifts onto another object in the video. In
the proposed method, points are tracked in an ‘‘unbiased” manner
without reference to the face detections such that there is no ten-
dency to ‘‘hallucinate” by failing to terminate a track. It is worth
noting that we applied a variant of the tracking method used here
with success in previous work on face matching [4]. In that work
the basic point tracker used affine covariant regions to provide
more robust matching of features between frames. While the affine
invariant method can potentially obtain longer tracks through
more severe rotation or deformation of the face, its computational
expense is considerably greater than that of the KLT method used
here.

By tracking, the initial set of face detections is reduced to the or-
der of 500 tracks, and short tracks (less than 10 frames, equivalent
to 400 ms), which are most often due to false positive face detec-
tions, are discarded.

3.1.1. Shot change detection
As noted, the face tracking method is applied to individual shots

of the video. Shot changes were automatically detected using a
simple method of thresholding the distance between colour histo-
grams computed for consecutive frames of the video. The shot
change detection method gives some false positive detections,
e.g., when a shot contains fast motion, and potentially might miss
‘‘fade” shot changes, although none appear in the Buffy video used
here. However, the accuracy of shot detection is not at all critical to
the overall performance of our method: (i) false positive shot
changes merely cause splitting of face tracks, which typically can
be ‘‘repaired” by matching the face appearance across the illusory
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shot change; (ii) false negative shot changes are resolved by the
point tracker, which typically will correctly fail to track points
across a (missed) shot change.

3.2. Facial feature localization

The output of the face detector gives an approximate location
and scale of the face. Extracting descriptors directly from this out-
put would result in an unstable descriptor, due both to the approx-
imate nature of the face detector output, for example the estimated
scale fluctuates with variation in head pose, and the imaged face
implicitly varies with changes in pose. A more stable description
of the face appearance is obtained by basing it on the position of
the facial features in the image. Nine facial features are located,
see Fig. 3b – the left and right corners of each eye, the two nostrils
and the tip of the nose, and the left and right corners of the mouth.
Additional features corresponding to the centres of the eyes, a
point between the eyes, and the centre of the mouth, are defined
relative to the located features.

To locate the features, a model combining a generative repre-
sentation of the feature positions with a discriminative representa-
tion of the feature appearance is applied.

3.2.1. Model of feature position and appearance
A variant of the probabilistic parts-based ‘‘pictorial structure”

model [5] is used to model the joint position (shape) and appear-
ance of the facial features. To simplify the model, two assumptions
are made: (i) the appearance of each feature is assumed indepen-
dent of the appearance of other features; (ii) the appearance of a
feature is independent of its position. Under these assumptions,
the confidence in an assignment F of positions to each facial feature
can be written as a likelihood ratio

PðFjp1; . . . ;pnÞ / pðp1; . . . ;pnjFÞ
Yn

i¼1

pðaijFÞ
pðaijFÞ

ð1Þ

where pi denotes the position of feature i in the detected face region
and ai denotes the image appearance about that point.

The joint position of the features pðp1; . . . ;pnjFÞ is modelled as a
mixture of Gaussian trees. The likelihood-ratio of the appearance
terms is modelled using a discriminative classifier.

3.2.2. Model of appearance
For each facial feature, for example the corner of an eye, a fea-

ture/non-feature classifier was trained using a multiple-instance
variant of the AdaBoost learning algorithm, which produces a
strong classifier as a linear combination of ‘‘weak” classifiers. The
multiple-instance variant iteratively updates labels on the training
data, compensating for small localization errors in the training
images. The features used as weak classifiers are the ‘‘Haar-like”
features proposed by Viola and Jones [20] which can be computed
efficiently using the integral image. The classifier is applied to the
output of the face detector in a sliding window fashion, and the
classifier output can be considered an approximate log-likelihood
ratio which can be directly substituted into Eq. (1).
Fig. 3. Face detection and facial feature localization. Note the low resolution
3.2.3. Model of position
The joint position of the facial features is modelled using a mix-

ture of Gaussian trees, a Gaussian mixture model in which the
covariance of each component of the mixture model is restricted
to form a tree structure with each variable dependent on a single
‘‘parent” variable [21]. The model is an extension of the single tree
proposed in [5], which was applied to facial feature localization
using simple generative appearance models, and the recent combi-
nation of a single tree with a discriminative appearance model
[22]. The use of a mixture of trees improves the ability of the model
to capture pose variation; three mixture components were used,
and found to correspond approximately to frontal views and views
facing somewhat to the left or right. At training time, the model is
fitted using an Expectation Maximization algorithm [21]. At testing
time, efficient search for the feature positions using distance trans-
form methods [5] is enabled by the use of tree-structured covari-
ance in each mixture component.

A collection of annotated consumer photographs of faces [23],
disjoint to the video data reported here, was used to fit the param-
eters of the position model and train the facial feature classifiers.
The confidence in the feature localization (Eq. (1)) proves to be
an effective measure for determining whether the face detector
output is actually a face or a false positive detection, and is thres-
holded to prune false positive face detections.

Fig. 3 shows examples of the face detection and feature localiza-
tion. Note that the ‘‘frontal” face detector also detects some faces
with significant out-of-plane rotation. The facial features can be lo-
cated with high reliability in the faces despite variation in scale,
pose, lighting, and facial expression.

3.3. Representing face appearance

A representation of the face appearance is extracted by comput-
ing descriptors of the local appearance of the face around each of
the located facial features. Extracting descriptors based on the fea-
ture locations [1,4] gives robustness to pose variation, lighting, and
partial occlusion compared to a global face descriptor [24,25]. Er-
rors may be introduced by incorrect localization of the features,
which become more difficult to localize in extremely non-frontal
poses, but using a frontal face detector restricts this possibility.

Before extracting descriptors, the face region proposed by the
face detector is further geometrically normalized to reduce the
scale uncertainty in the detector output and the effect of pose var-
iation, e.g., in-plane rotation. An affine transformation is estimated
which transforms the located facial feature points to a canonical
set of feature positions (roughly those of a frontal vertical face).
Appearance descriptors are computed around each facial feature
within a circular support region in the canonical reference frame.
Under the affine transformation each circle in the canonical frame
corresponds to an ellipse in the original frame. A simple pixel-wise
descriptor of the local appearance around a facial feature is ex-
tracted by taking the vector of pixels in the elliptical region and
normalizing (so that the intensity has zero mean and unit variance)
to obtain local photometric invariance. The descriptor for the face
, non-frontal pose and challenging lighting in the example on the right.
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is then formed by concatenating the descriptors for each facial fea-
ture. The distance between a pair of face descriptors is computed
using Euclidean distance. Fig. 4 shows examples of the elliptical re-
gions from which the descriptor is extracted, and the correspond-
ing normalized image regions.

It is natural to consider the use of more established image rep-
resentations commonly used in face recognition, for example so-
called Eigenfaces [26] or Fisherfaces [27], or alternative local fea-
ture representations such as SIFT [28] which have successfully
been used in feature-matching tasks including face matching [4],
especially considering the simplicity of the descriptor proposed
here. In classical face recognition work, two aspects differ from
the situation here: (i) changes in pose, expression and lighting
are typically assumed small; (ii) while multiple images of various
people may be available for training (e.g., for learning a PCA basis),
typically only a single ‘‘gallery” image is available to model a par-
ticular person [29]. Eigenface methods offer some invariance to
very small changes in pose due to the empirically band-pass nature
of the basis, but cannot cope with large variations in pose; Fisher-
face methods are typically very unstable in the presence of pose
variation due to the empirically high-pass nature of the basis.
The second point, however, is key: the use of a single image as
the model for a person. This requires that the descriptor general-
izes far from that single image if success is to be obtained for vari-
ations in pose and expression. However, in the domain considered
here, as described in Sections 3.5 and 4, multiple exemplars are ex-
tracted as the model of the person. This requires less generalization
from the descriptor, and excessive generalization will degrade per-
formance. We return to this point in Section 6.

3.4. Representing clothing appearance

In some cases, matching the appearance of the face is extremely
challenging because of different expression, pose, lighting or mo-
tion blur. Additional cues to matching identity can be derived by
representing the appearance of the clothing [30–33]. We use a sim-
ple model of clothing location relative to the face and represent
colour alone here [30,31]. Some recent work has also accounted
explicitly for varying pose of the person in locating the clothing
[32] and incorporated texture features [33].

As shown in Fig. 5, for each face detection a bounding box which
is expected to contain the clothing of the corresponding character
is predicted. The size and position of the box are fixed relative to
the position and scale of the face detection. Within the predicted
clothing box a colour histogram is computed as a descriptor of
the clothing. We used the YCbCr colour space which has some
Fig. 4. Face appearance descriptors. For the two faces shown, ellipses show the affine-tr
computed. Patches on the right show the extracted image regions.

Fig. 5. Matching characters across shots using clothing appearance. In the two examples s
and motion blur. The strongly coloured clothing allows correct matches to be establishe
advantage over RGB in de-correlating the colour components.
The histograms had 16 bins per colour channel. The distance be-
tween a pair of clothing descriptors was computed using the chi-
squared measure [34]. Fig. 5 shows examples which are challeng-
ing to match based on face appearance alone, but which can be
matched correctly using clothing.

Of course, while the face of a character can be considered some-
thing unique to that character and in some sense constant (though
note that characters in this TV series who are vampires change
their facial appearance considerably), a character may, and does,
change their clothing within an episode. This means that while
similar clothing appearance suggests the same character, observ-
ing different clothing does not necessarily imply a different charac-
ter. As described in Section 5, we found that a straightforward
weighting of the clothing appearance relative to the face appear-
ance proved effective here.

3.5. Speaker detection

The aligned subtitle and script annotation (Section 2.3) pro-
poses one or more possible speaker names for each frame of the vi-
deo containing some speech. Note that this annotation says
nothing about where in the frame the speaker appears, or indeed
whether they are in fact visible at all. With respect to the faces
in the video, the annotation derived from text alone proves to be
extremely ambiguous. There are three main forms of ambiguity,
illustrated in Fig. 6: (i) there might be several detected faces pres-
ent in the frame – the script does not specify which one corre-
sponds to the speaker. Fig. 6a shows such a case, where the
script tells us that Tara is speaking, but two faces are visible in
the frame – which (if any) is Tara? (ii) even in the case of a single
face detection in the frame the actual speaker might be undetected
by the frontal face detector. Fig. 6b shows an example, where Buffy
is speaking but is undetected because of the profile pose. Assuming
that the single detected face (Willow) corresponds to the speaker
would be an error in this case; (iii) the frame may be part of a
‘‘reaction shot” where the speaker is not present in the frame at
all. Fig. 6b shows an example, where we see Willow and Buffy’s
reaction to what is said by Tara, who is off-screen ‘‘behind the
camera”.

The goal here is to enhance the annotation provided by the
script, resolving these ambiguities by identifying the speaker using
visual information. By confirming visually that a particular face in
the image is that of someone speaking, the correspondence be-
tween that face and the name of the speaker given by the script
is established.
ansformed regions around the localized facial features from which the descriptor is

hown the face is difficult to match because of the variation in pose, facial expression
d in these cases.
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Fig. 7. Speaker identification by detecting lip movement. (a) Inter-frame differences for a face track of 101 face detections. The character is speaking between frames 1–70
and remains silent for the rest of the track. The two horizontal lines indicate the ‘‘speaking” (top) and ‘‘non-speaking” (bottom) thresholds, respectively. (b) Top row:
Extracted face detections with facial feature points overlaid for frames 47–54. Bottom row: Corresponding extracted mouth regions.

Fig. 6. Examples of speaker ambiguity. In all the cases shown the aligned script proposes a single name, shown above the face detections. (a) Two faces are detected but only
one person is speaking. (b) A single face is detected but the speaker is actually missed by the frontal face detector. (c) A ‘‘reaction shot” – the speaker is not visible in the frame.
The (correct) output of the speaker detection algorithm is shown below each face detection.
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Visual speaker detection [35] is achieved here by the intuitive
approach of finding face detections with significant lip motion. A
rectangular mouth region within each face detection is identified
using the located mouth corners (Section 3.2). Examples of the ex-
tracted mouth region are shown in Fig. 7b. The sum of squared dif-
ference of the pixel values within the region is computed between
the current and previous frame as a measure of the amount of mo-
tion in the mouth region. To achieve moderate translation invari-
ance, giving some robustness to pose variation of the head, the
inter-frame difference is computed over a search region around
the mouth region in the current frame and the minimum taken.
Fig. 7a shows a plot of the inter-frame difference for a face track
where the character speaks then remains silent.

Two thresholds on the inter-frame difference are set to clas-
sify face detections into ‘‘speaking” (difference above a high
threshold), ‘‘non-speaking” (difference below a low threshold)
and ‘‘refuse to predict” (difference between the thresholds).
Thresholds were set by eye and kept fixed for all the experi-
ments reported here – it should be noted that generating ground
truth for speaking/non-speaking so that these thresholds could
be set systematically is in general quite difficult because of nat-
ural pauses in the speech and the production of sound with little
movement of the lips. This simple lip motion detection algo-
rithm works well in practice as illustrated in Fig. 7. Fig. 8 shows
further examples where the method correctly assigns a class
‘‘non-speaking” despite significant changes in head pose and
mouth shape (smiling). Note that in choosing the method and
thresholds it is somewhat more important to achieve a low false
positive (detector predicts speaking when character is silent)
rate than false negative rate. As discussed in Section 4.2, false
positive speaker detections cause incorrectly labelled faces to en-
ter the set of exemplars used for naming, which may propagate
incorrect names to other face detections.

The speaker detector produces a classification for each frame
of a face track. Names proposed by the script for the correspond-
ing face detections classified as speaking are accumulated into a
single set of names for the entire face track. In many cases this
set contains just a single name, but there are also cases with
multiple names, due to merging of script lines into a single sub-
title (Section 2.3) and imprecise timing of the subtitles relative
to the video.
4. Naming by classification

The combination of subtitle/script alignment and speaker
detection gives a number of ‘‘exemplar” face tracks for which, with
high probability, the single proposed name is correct. Fig. 9 shows
examples of exemplar face tracks extracted for two characters.
Note that each face track consists of multiple face detections, so
the number of exemplar faces is much greater than the number
of tracks, as shown in the figure.

The overall naming problem is effectively transformed into a
standard supervised classification problem: for some tracks, the
corresponding name (class) is extracted from the text and speaker
detection, with high probability of being correct (Section 5.1); from
these tracks a model or classifier may be built for each character in
the video; this classifier is then applied to assign names to tracks
which have no, or an uncertain, proposed name.

We consider here two classification methods. First, a ‘‘nearest
neighbour” method presented in an earlier version of this work
[11]; second, use of a support vector machine (SVM) classifier



Fig. 8. Correct classification of tracks as ‘‘non-speaking”. Examples of two face tracks are shown. (a) Frames 1,6,11, . . .,36 from a 44 frames long face track. All frames in this
face track are correctly classified as ‘‘non-speaking” despite significant head pose variation. (b) Frames 1,11,21, . . .,71 from a 75 frames long face track. The track is correctly
identified as ‘‘non-speaking” despite the shape and appearance variations in the mouth due to expression change (smiling). 73 frames are classified as ‘‘non-speaking” and 2
as ‘‘refuse to predict”. In both (a) and (b) the top row shows the extracted face detections with facial features overlaid and the bottom row shows the corresponding extracted
mouth regions.

Fig. 9. Examples of exemplars for two of the main characters. Each track may consist of tens of faces – a single example is shown for each track. The total number of exemplar
faces for each character is shown in parentheses.
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which can, to some extent, cope with errors in the names ob-
tained from speaker detection. Central to both methods is that
the model for a character has multiple modes (in the sense of
density), consisting of a (weighted) set of exemplars in appear-
ance space. This allows the model to capture distinct ‘‘phases”
of a person’s appearance, for example mouth open vs. mouth
closed. An alternative view is that the multiple modes of the
model represent sparse samples on an underlying person-specific
appearance manifold. Note that this choice of multi-modal mod-
el is possible because the subtitle/script processing and speaker
detection gives multiple examples of a character’s appearance
without the need for further manual intervention. This is in dis-
tinct contrast to classical face recognition where the number of
examples of an individual’s appearance is typically very small
(often one) but only a limited range of pose, expression, and
lighting is considered.
4.1. Similarity measure

Common to the two classification methods considered here is
the definition of a similarity measure between a pair of face
tracks. Recall that a face track consists of a bag of face and cloth-
ing descriptors, one per frame of the track (Section 3.1), and that
measures of the distance between a pair of face descriptors (Sec-
tion 3.3) and clothing descriptors (Section 3.4) have been
defined.

Given a pair of ‘‘person” detections (faces and associated cloth-
ing) pi and pj, and the definitions for the distance between face
descriptors df and clothing descriptors dc , we define the similarity
sðpi; pjÞ between the two persons as:

sðpi; pjÞ ¼ exp �
df ðpi; pjÞ

2r2
f

( )
exp �

dcðpi; pjÞ
2r2

c

� �
ð2Þ
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The scale factors rf and rc control two aspects: (i) the relative
influence of the face and clothing descriptors, and (ii) the overall
‘‘peakiness” of the similarity measure, that is how quickly the sim-
ilarity decays about a pair of faces. The relevance of the latter will
become clear in Section 4.2.

The similarity SðFi; FjÞ between a pair of face tracks Fi and Fj is
defined based on the person similarity as:

SðFi; FjÞ ¼ max
pi2Fi ;pj2Fj

sðpi; pjÞ ð3Þ

This defines the similarity between a pair of face tracks as the
maximum similarity over any pair of person descriptors taken
across the tracks, and has also been referred to as the ‘‘min–min”
distance [4]. Note, we are assuming here that a good match re-
quires a similarity of both face and clothing. Other possibilities
could also be considered, for example that a track corresponds to
the same character if the faces have a high similarity even if the
clothing does not (to allow for unobserved changes of clothing).

Equipped with these definitions and suitable choice of con-
stants, the similarity between all pairs of face tracks can be
computed.

4.2. ‘‘Nearest neighbour” classifier

The first classification method we investigate, first reported in
[11], uses a ‘‘nearest neighbour” approach. Let us define the name
proposed for a track Fj by the text processing and speaker detection
as nj. A tuple of face track and corresponding name will be referred
to as an exemplar. We then define the ‘‘quasi-likelihood” that an
unlabelled track Fu arose from the person with name ki as:

pðFujkiÞ ¼ max
Fj :nj¼ki

SðFu; FjÞ ð4Þ

This definition is ‘‘nearest neighbour” in that only the similarity
to the most similar exemplar with a given name is used to assign
the likelihood. Assuming that the person associated with each
name kj may appear in the video with equal prior probability,
and applying Bayes’ rule, we can derive an approximation of the
posterior probability that the track should be assigned the name ki:

PðkijFuÞ ¼
pðFujkiÞP

j
pðFujkjÞ

ð5Þ

A predicted name is then assigned to the track as the name ki for
which the posterior probability PðkijFuÞ is maximal. Note that this
is equivalent to the name for which the likelihood (Eq. (4)) is max-
imum. However, the utility in defining an approximation of the
posterior probability (Eq. (5)) is that it gives an indication of the
certainty of the predicted name – if a given face track is similar
to exemplars for several characters, the posterior probability for
each name falls, indicating the uncertainty in the prediction. It is
in defining the posterior that the overall scale of the face and cloth-
ing distances (Eq. (2)) becomes relevant, controlling the scale at
which the difference between two similar exemplars is considered
‘‘uncertain”.

By thresholding the posterior, a ‘‘refusal to predict” mechanism
is implemented – faces for which the certainty of naming does
not reach some threshold will be left unlabelled; this decreases
the recall of the method but improves the accuracy of the labelled
tracks. In Section 5 the resulting precision/recall tradeoff is
reported.

The ‘‘nearest neighbour” classifier described here has appeal in
its simplicity, and captures the multi-modal distribution of appear-
ance for a single character which we advocate; it also captures the
notion that some tracks may be implicitly difficult to label reliably,
and might best be left unlabelled. However, there are two potential
weaknesses with the method: (i) it is assumed that the names
assigned to exemplar tracks by the text processing and speaker
detection are correct; (ii) it is assumed that all exemplar appear-
ances are equally valid, e.g., regardless of whether they are blurred,
show particularly extreme facial expressions, are partially oc-
cluded, etc. Both these assumptions may cause errors since the
prediction made for an unlabelled track is made on the basis of
the single nearest exemplar, and cannot be corrected.

4.3. SVM classifier

A possible solution to the assumptions made in the nearest
neighbour classifier we have investigated is the use of a SVM clas-
sifier (see [36]). In this approach, the same definition of similarity
between face tracks is retained, but is now used as a kernel for the
SVM. One SVM is trained per name using a 1-vs-all scheme. All the
exemplar tracks for that name are used as positive data, and the
exemplars for all other names provide the negative training data.
The SVM defines the confidence QðkijFuÞ that the name ki should
be assigned to an unlabelled track Fu as:

QðkijFuÞ ¼
X

j

W ijSðFu; FjÞ þ ki ð6Þ

where Wij is the weight assigned to exemplar j for the name ki, and ki

is a (bias) constant. Note that the form of the confidence measure is
similar to that of the likelihood defined in the nearest neighbour
model (Eq. (4)). The max function is replaced with a sum, analogous
to the choice of nearest neighbour density estimator versus a Parzen
estimate (see [37]). Additionally, weights are introduced for all
exemplars, so that the confidence depends on both the positive
and negative data (not only on the closest positive example as in
Eq. (4)).

The potential strength in the SVM method comes then not from
the form of discriminant, but the criterion used to choose the
weights W. The SVM training minimizes a weighted sum of two
terms: the margin of the classifier on the training set and a penalty
on the norm of the weight vector Wi. This latter term regularizes the
solution, penalizing ‘‘non-smooth” discriminants. The effect is that
elements of W may become small or zero, effectively discarding
‘‘outlier” exemplars which may have either incorrect names as-
signed by speaker detection, or have extreme or non-discrimina-
tive appearance which does not aid classification in general. The
SVM can thus potentially correct errors made in the names pro-
posed by the text processing and speaker detection, increasing
the accuracy in the name assignment both in the labelled exemplar
tracks and unlabelled tracks.

To implement the SVM method we used the publicly available
LIBSVM software [38], with a custom kernel defined by the track
similarity measure of Eq. (3). The same values for the parameters
(rf , etc) are used as in the nearest neighbour classifier. The ‘‘refusal
to predict” mechanism was implemented by thresholding the max-
imum of the confidence QðkijFu) over names ki.
5. Experimental results

The proposed method was applied to three episodes of ‘‘Buffy
the Vampire Slayer” – in total around two hours of video. Episode
05-02 contains 62,157 frames in which 25,277 faces were detected,
forming 516 face tracks; episode 05-05 contains 64,083 frames,
24,170 faces, and 477 face tracks; episode 05-13 contains 64,075
frames, 26,826 faces, and 533 face tracks.

Ground truth names for every face detection were produced by
hand. While the task of assigning ground truth to every one of
around 75,000 face detections might appear daunting, the use of
the face tracking algorithm (Section 3.1) makes this a relatively
cheap procedure in terms of time. A two stage approach was used:
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first, all face tracks are visually checked to ensure that they contain
only a single character. As noted in Section 3.1 the tracking algo-
rithm proves extremely reliable, and in practice no false merges
of tracks are found, but an interface was provided to manually split
tracks in the case that errors occurred. Second, a single ground
truth name is assigned to every face detection making up that
track. This approach reduces the task of ground truth labelling
from that of labelling 75,000 faces to around 1500 tracks.

The ground truth cast list has twelve named characters: Anya,
Buffy, Dawn, Giles, Glory, Harmony, Joyce, Riley, Spike, Tara, Wil-
low, Xander. In addition, a single name ‘‘Other” is applied to faces
of other people appearing in the video – this includes un-named
incidental characters and extras. False positive face detections
are assigned the name ‘‘FalsePositive”. To be considered a correct
name, the algorithm must distinguish between the main charac-
ters, unnamed characters and false positive face detections. It
should be noted that, while the set of people to be distinguished
is smaller than might be used in classical face recognition research
where a ‘‘gallery” of 100 people might be typical, the imaging con-
ditions (pose, expression, lighting, etc.) are far more varied in the
domain considered here, making this a challenging task.

Note that ground truth is only established for the face detec-
tions produced by the frontal face detector used [15] (whether true
or false positive). The results reported here, as in previous work [4],
are therefore relative to the proportion of appearances of a charac-
ter detected by a state-of-the-art frontal face detector. Section 7
discusses the question of how many of the actual appearances of
a character in any pose, for example in profile views or facing away
from the camera, are represented by this proportion.

The parameters of the speaker detection, weighting terms in the
quasi-likelihood (Eq. (4)), and weight parameter in SVM learning
were coarsely tuned on episode 05-02 and all parameters were left
unchanged for the other episodes. No manual annotation of any
data was performed other than to evaluate the method (ground
truth label for each face track).

5.1. Speaker detection

We first report the accuracy of the speaker detection algorithm.
The performance of this part of the method is important since, for
the nearest neighbour classifier (Section 4.2), errors in speaker
detection cannot be corrected. The speaker detection method (Sec-
tion 3.5) allows for three outputs: ‘‘speaking”, ‘‘non-speaking” and
‘‘refuse to predict”. Across the three episodes, the method labels
around 25% of face tracks as speaking, and of those the correspond-
ing label from the script has around 90% accuracy.

Fig. 10 shows two examples where the speaker detection fails.
In Fig. 10a, the character shouts and is correctly identified as
‘‘speaking” but the timing information on the subtitles is inaccu-
rate such that the face is attributed to a character who appears
at the beginning of the next shot. Ambiguities such as this occur
Fig. 10. Examples of errors in speaker identification. (a) Four frames from a 19 frames lon
detection, due to inaccurate subtitle timing information this shout is attributed to a perso
the actor silently opens her mouth and is wrongly classified as speaking. In both (a) and (
bottom row shows the corresponding extracted mouth regions.
because the timing information on the subtitles does not precisely
indicate the time at which a spoken line starts and finishes, for
example when a long line is spoken quickly the subtitle display
time may have been extended to facilitate reading. In Fig. 10b,
the face is incorrectly classified as ‘‘speaking”. In this case the shot
is a ‘‘reaction shot” in which the visible character (silently) gasps in
shock at what is being said by another character off-screen. Such
cases of speech-like motion are difficult to detect based on visual
information alone. Other errors in the speaker detection are due
to complex appearance changes of the mouth region such as partial
occlusion by another person, severe head pose changes, and com-
plex lighting effects (e.g., a moving shadow cast by another per-
son). Such changes cause large apparent motion of the mouth
which is incorrectly classified as speech. Greater accuracy in such
cases might be obtained by using a more complete model of the
mouth region, and is left for future work.

5.2. Naming accuracy

We turn now to the performance of the entire method on the
naming task. In this section we concentrate on the performance
of the nearest neighbour method (Section 4.2) previously proposed
[11], and comparison to baseline methods based on the subtitle/
script alone. In the next section the performance of the SVM meth-
od (Section 4.3) and the influence of errors in speaker detection are
considered.

Fig. 11 shows precision/recall curves for the proposed nearest
neighbour method. Quantitative results at several levels of recall
are shown in Table 1. The term ‘‘recall” is used here to mean the
proportion of tracks which are assigned a name after applying
the ‘‘refusal to predict” mechanism (Section 4). The term ‘‘pre-
cision” refers to the proportion of correctly labelled tracks. Note
that reporting performance in terms of face tracks, rather than
individual face detections, gives a more meaningful assessment
since the faces in a track can be associated in a rather straightfor-
ward manner by tracking (Section 3.1). Reporting performance by
individual face detections would allow the presence of some long
tracks with little or unchallenging motion to bias the apparent
results.

These results illustrate the benefit of learning from the exem-
plars to label other tracks. The recall and precision of the exem-
plars alone (i.e., only those tracks for which speaker detection
assigns a name from the text, without any visual labelling of other
tracks) is 31.0% recall, 90.6% precision for episode 05-02; 27.9% re-
call, 91.7% precision for episode 05-05; 34.5% recall, 82.1% preci-
sion for episode 05-13.

Two baseline methods were compared to the proposed method:

(i) ‘‘Prior” – label all tracks with the name which occurs most
often in the script (e.g., Buffy). It is expected that the main
characters will appear in the video rather more frequently
g face track where the actor shouts and is detected as speaking. Despite valid visual
n speaking in the next shot. (b) Four frames from a 23 frames long face track where
b) the top row shows extracted face detections with facial features overlaid and the
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(c) Episode 05-13

Fig. 11. Precision/recall curves for three episodes. Recall is the proportion of face
tracks which are assigned labels by the proposed method at a given confidence
level, and precision the proportion of correctly labelled tracks. The graphs show the
performance of the proposed method and two baseline methods using the subtitles
to propose names for each face track (see text for details).

Table 1
Quantitative precision results at different levels of recall

Recall Episode 05-02 Episode 05

60% 80% 90% 100% 60%

Proposed method 87.5 78.6 72.9 68.2 88.5

Subtitles only 45.2

Prior 21.3

The baseline methods do not provide a means for ranking, so only the overall accuracy
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than secondary characters so it is important to establish the
extent to which this is true so that the true accuracy of the
method can be distinguished from ‘‘chance”.

(ii) ‘‘Subtitles only” – label any tracks with proposed names from
the script (not using speaker identification) as one of the pro-
posed names, breaking ties by the prior probability of the
name occurring in the script; label tracks with no proposed
names as the most-frequently occurring name (e.g., Buffy).
This baseline allows us to assess to what extent the visual pro-
cessing improves accuracy over the use of text alone. It is
interesting to note that in previous work [8] which combined
transcripts of news footage with Eigenface-based face recog-
nition, only small improvements in accuracy were obtained
by incorporating visual face recognition.

As expected, the distribution over the people appearing in the
video is far from uniform – labelling all face tracks ‘‘Buffy” gives
correct results 21.9% of the time in episode 05-02 and 36.9% of
the time in episode 05-05. In episode 05-13 minor characters dom-
inate, and the prior labels only 5.1% of tracks correctly. The cues
from the text alone (subtitles and script) increase this accuracy
to around 35–50% in each episode. While an improvement over
chance, this reveals the relative weakness of the text as a cue to
identity.

Using the proposed nearest neighbour method, if we are forced
to assign a name to all face tracks, the accuracy obtained is around
63–69% across episodes. Requiring only 80% of tracks to be labelled
increases the accuracy to around 75–80%. We consider these re-
sults extremely promising given the challenging nature of this
data.

Fig. 12 shows some examples of correctly detected and named
faces. Note that correct naming is achieved over a very wide range
of scale, pose, facial expression and lighting. The ability of the pro-
posed method to give good results in such conditions is attribut-
able to (i) the automatic extraction of exemplars throughout the
video such that the changes in appearance are, to some extent,
spanned by the exemplar set; (ii) the use of a multi-modal model
of a person’s appearance which enables a representation of the dis-
tinctly different appearances to be maintained.

5.3. SVM method and errors in speaker detection

As noted in Section 4.2, errors in the speaker detection and the
presence of ‘‘outlier” faces in the exemplar set may contribute to
errors on the naming task. A possible solution is the use of a
SVM classifier (Section 4.2), which is theoretically robust to such
errors in the training data. In this section, we examine the influ-
ence of errors in the speaker detection on the nearest neighbour
method, and report the performance of the SVM classifier.

Fig. 13 shows precision/recall curves for the original nearest
neighbour method (‘‘NN-Auto”) using automatic speaker detection,
and reported in the previous section. The results of two additional
experiments are reported: (i) ‘‘NN-Manual” is the nearest neigh-
bour method using manually labelled exemplars. This corrects
-05 Episode 05-13

80% 90% 100% 60% 80% 90% 100%

80.1 75.6 69.2 84.1 75.2 69.2 63.0

51.1 36.2

36.9 5.1

is reported.



Fig. 12. Examples of correct detection and naming throughout episode 05-02.
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any exemplars which have been assigned an incorrect name by the
automatic speaker detection method. Note that this should be con-
sidered for discussion alone, since the manual labelling of exem-
plars requires more user intervention than we desire; (ii) ‘‘SVM”
is the SVM classifier proposed in Section 4.3, trained using auto-
matic speaker detection. In this case, the hope is that the SVM
training criterion can remove errors in the names assigned by
speaker detection, and remove ‘‘outlier” exemplars which are not
helpful to discrimination. We also tried training the SVM using
manually labelled exemplars; the results were indistinguishable
from those obtained using automatically labelled exemplars, and
are omitted here for the sake of clarity. Quantitative results for
each experiment are reported in Table 2.

The first result of note is that the errors in the exemplar labels
caused by errors in speaker detection do indeed impact the overall
naming accuracy of the nearest neighbour classifier. The precision
using manually labelled exemplars is consistently greater, at 40%
recall increasing from 91.3% to 99.6% (+8.3%) for episode 05-02,
from 91.7% to 99.5% (+7.8%) for episode 05-05, and from 86.4% to
99.6% (+13.2%) for episode 05-13. The increase diminishes slightly
at higher recall, with precision at 100% recall of 73.3% versus 68.2%
(+5.1%) on episode 05-02, 74.0% versus 69.2% (+4.8%) on episode
05-05, and 75.4% versus 63.0% (+12.4%) on episode 05-13, but
the improvement obtained by using manually labelled exemplars
is consistent. The notable improvement in results on episode 05-
13 can be attributed to the low accuracy of labels from speaker
detection (82.1%) obtained for this episode due to factors including
imprecise alignment of the video and subtitle. The decrease in
accuracy at high recall is likely indicative of the failure of the face
track similarity measure at ‘‘long range” – when there are exam-
ples in the video for which the similarity to any exemplar is low,
those examples cannot be labelled reliably.

As shown, use of the SVM classifier does, to some extent, over-
come the errors in the exemplar labels from the speaker detection.
On episode 05-02 at a recall level of 40%, the SVM method gives
96.7% precision versus 91.3% (+5.4%) using the nearest neighbour
method, 96.7% versus 91.7% (+7.8%) on episode 05-05, and 91.2%
versus 86.4% (+4.8%) on episode 05-13. These improvements are
considerable, however, at higher levels of recall the accuracy of
the SVM method decreases such that above around 65% recall it
gives worse results than the nearest neighbour method: at 100%
recall the precision decreases from 68.2% to 62.4% (�5.8%) on epi-
sode 05-02, from 69.2% to 64.6% (�4.6%) on episode 05-05, and
from 63.0% to 62.3% (�0.7%) on episode 05-13. The decrease in
the precision of the SVM classifier at high recall levels might be ex-
plained by the outlier rejection effected by the SVM training. If
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Fig. 13. Effect of errors in the exemplar labels and the SVM method. ‘‘NN-Auto” is
the originally proposed nearest neighbour method with automatically labelled e-
xemplars; ‘‘NN-Manual” uses the same method with manually labelled exemplars;
‘‘SVM” is the SVM method trained with automatically labelled exemplars.

Table 2
Quantitative results showing the effect of errors in the exemplar labels and the SVM meth

Recall Episode 05-02 Episode 05-05

40% 60% 80% 90% 100% 40% 60%

NN-Auto 91.3 87.5 78.6 72.9 68.2 91.7 88.5

NN-Manual 99.6 97.2 85.3 79.1 73.3 99.5 94.1

SVM 96.7 89.7 73.8 67.5 62.4 96.7 89.6
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there is an exemplar which lies far from the other exemplars, but is
nevertheless correctly labelled, it may be pruned as an outlier; at
testing time, the loss of this exemplar can cause tracks to be incor-
rectly classified which lie far from any of the reduced set of exem-
plars. However, the initial improvement in results obtained by the
SVM classifier show promise, and should motivate more applica-
tion-oriented detection of errors in the labels or visual outliers.

6. Discussion

In the original version of this work [11], the proposed (nearest
neighbour) classification method had no explicit mechanism for
error correction. The SVM classifier proposed here shows some po-
tential for dealing with errors in the speaker detection and ‘‘out-
lier” appearances, but as noted does not represent a full solution
to the problem. Rather than requiring the classifier training algo-
rithm to cope with errors in the annotation, a more global ap-
proach which considers the resultant labelling of the entire video
may be more successful. A promising approach is to cast the label-
ling problem as one of solving a conditional random field (CRF)
over the graph of connections generated by face and clothing sim-
ilarities. In this setting, rather than viewing the annotation ex-
tracted from speaker detection as ground truth, yielding a fully
supervised learning problem, the annotation is viewed in a ‘‘softer”
manner as a prior on the labels.

The success of the CRF method would require more ‘‘long-
range” interactions between the tracks to be generated in order
to build a richer, more connected graph structure. This requires
that the descriptors computed for the tracks have greater general-
ization (e.g. over pose or expression) than the current pixel-based
descriptor adopted here. For example, replacing the pixel-based
descriptor with a SIFT [28] descriptor or using Eigen facial-features
would give some robustness to image deformation. Similarly the
2D face description could be replaced by a 3D description by fitting
a parameterized 3D model to the detected face [39,40]. This can be
thought of as ‘‘engineering in” some level of invariance or general-
ization. In the current exemplar framework slightly worse results
on the naming task were obtained by using SIFT (compared to
the simple pixel-based descriptor), but this might reasonably be
attributed to the SIFT descriptor incorporating too much invariance
to slight appearance changes relevant for discriminating faces. In a
CRF framework this lack of discrimination may not be such a prob-
lem as other information may be available to correct such errors.

7. Conclusions

We have proposed methods for incorporating textual and visual
information to automatically name characters in TV or movies and
demonstrated promising results obtained without any supervision
beyond the readily available annotation.

We consider of particular interest the use of visual speaker
detection to improve the specificity of the ambiguous textual
annotation. The idea of using lower-level vision methods to im-
prove the annotation does not appear to be widespread, and could
od

Episode 05-13

80% 90% 100% 40% 60% 80% 90% 100%

80.1 75.6 69.2 86.4 84.1 75.2 69.2 63.0

86.2 80.2 74.0 99.6 98.5 87.9 82.3 75.4

75.5 69.4 64.6 91.2 85.6 74.0 67.6 62.3
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be applied in domains beyond that addressed here. An example is
the area of learning object recognition from images annotated with
keywords [41], e.g., learning to recognize cars from images anno-
tated with the word ‘‘car” but with no segmentation of the image
specified. For images annotated with some additional appearance
properties, e.g., ‘‘red car”, lower-level vision methods, i.e., colour
classification, could be used to ‘‘target” the object referred to by
the annotation in a manner similar to that used here in the form
of speaker detection.

It is also worth noting that while there is previous work on rec-
ognizing people in video using text, the video properties have not
been exploited, treating a segment of video as an unrelated collec-
tion of still images. The use of face tracking and speaker detection
here shows the benefits of exploiting the specific properties of vi-
deo. The general framework proposed here has also recently been
applied successfully to face recognition from a wearable camera
[42], using the same principle of face tracking to collect exemplars,
and the same feature localization and representation methods pro-
posed here.

In contrast, one aspect of TV and movie footage which has been
neglected here is the audio. While the availability of script and sub-
titles makes the audio track seemingly redundant, since the script
specifies who is speaking, and the subtitles specify when, there
might be more information to be extracted from the audio. One
area where the audio might usefully be applied is resolving the
ambiguity in the subtitle/script timing mentioned in Section 2.3.
Another interesting possibility is to attempt to localize the speaker
in the frame based on the audio, augmenting the visual speaker
detection. Related work in this direction [43] has used the correla-
tion between video and audio to discover which pixels are
‘‘responsible” for a sound, and a similar approach might be used
for identifying which person in the image is speaking.

The detection method and appearance models used here could
be improved, for example by bootstrapping person-specific detec-
tors [2] from the automatically obtained exemplars in order to deal
with significantly non-frontal poses, and including other weak cues
such as hair or eye colour. Further use of tracking, for example
using a specific body tracker rather than a generic point tracker,
could propagate detections to frames in which detection based
on the face is difficult. As noted in Section 5, the results reported
here are for frontal faces only. In other work [40], ground truth
was prepared for all occurrences of characters in a TV show (‘‘Faw-
lty Towers”), whether facing toward the camera or not. It was esti-
mated that frontal faces account for only around one third of the
occurrences of a character’s face in the video, with the remainder
being approximately one third profile, and one third facing away
from the camera. This clearly leaves substantial space for improv-
ing the coverage of the proposed method.

In general, it seems promising to pursue further contextual cues
such as co-occurrence of particular people or recognition of loca-
tion. In the particular domain of TV and movies, there is also
‘‘grammar” of editing in cinematography, for example alternating
close-up shots during a dialogue, which could be exploited.
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