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Abstract. Most current methods for multi-class object classification
and localization work as independent 1-vs-rest classifiers. They decide
whether and where an object is visible in an image purely on a per-class
basis. Joint learning of more than one object class would generally be
preferable, since this would allow the use of contextual information such
as co-occurrence between classes. However, this approach is usually not
employed because of its computational cost.

In this paper we propose a method to combine the efficiency of single
class localization with a subsequent decision process that works jointly
for all given object classes. By following a multiple kernel learning (MKL)
approach, we automatically obtain a sparse dependency graph of rele-
vant object classes on which to base the decision. Experiments on the
PASCAL VOC 2006 and 2007 datasets show that the subsequent joint
decision step clearly improves the accuracy compared to single class
detection.

1 Introduction

Object detection in natural images is inherently a multi-class problem. Already
in 1987, Biederman estimated that humans distinguish between at least 30,000
visual object categories [3]. Even earlier, he showed that the natural arrange-
ment and co-occurrence of objects in scenes strongly influences how easy it is
to detect objects [4]. Recently, Torralba and Olivia obtained similar results for
automatic systems [27]. However, most algorithms that are currently developed
for object detection predict the location of each object class independently from
all others. The main reason for this is that it allows the algorithms to scale only
linearly in the number of classes. By disregarding other object classes in their
decision, such systems are not able to make use of dependencies between object
classes. Dependencies are typically caused by functional relations between ob-
jects (an image showing a computer keyboard has a high chance of also showing
a computer screen), or by location and size (a mosquito would not be visible in
an image of an elephant).

In this paper, we propose a method that automatically makes use of depen-
dencies between objects and their background as well as between different object
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Fig. 1. Example images from the PASCAL VOC 2007 dataset [8]. Objects are marked
by their bounding boxes. Some object classes like chairs and tables or cars and buses
tend to occur together.

classes. It relies on first performing an overcomplete per-class detection, followed
by a post-processing step on the resulting set of candidate regions. All neces-
sary parameters, in particular the relation between the categories, are learned
automatically from training data using a multiple kernel learning procedure. As
a result, we obtain a sparse dependency graph of classes that are relevant to
each other. At test time only these relevant classes are considered, making the
algorithm efficiently applicable for problems with many object categories.

2 Related Work

Early approaches to object localization were mainly targeted at the detection of
frontal faces and of pedestrians in street scenes. The influential work by Viola
and Jones [28] might be the most well known publication in this area. Viola and
Jones propose to detect faces by applying a cascade of weak classifiers at every
location of the image. Regions that do not look face-like are rejected early on,
whereas promising regions are kept until a final decision is made. The authors
also mention the possibility of using a different classifier as last element of the
cascade, which then acts as a strong post-filter of the cascade’s output. Such
two-step procedures, in which a first stage predicts candidate regions and a
second stage accepts or rejects them, have been used frequently, especially when
real-time performance is required. Variants include the of use of artificial neural
networks [22], linear SVMs [7], reduced set SVMs [14], tree-structures instead of
linear cascades [17], or fusion of different data modalities [19].

Recently, more methods to also detect multiple and more general object classes
have been developed. In this area, sliding window approaches of single layer qual-
ity functions are more popular than hierarchical cascades to generate the regions
of interest [11,15]. Alternatively, the Implicit Shape Model has been used [12],
or heuristic techniques based on keypoint voting [5,6]. There is also a variety
of methods to estimate the location and pose of object by probabilistic or geo-
metric part models [2,10,13,18,24]. However, all these methods have in common
that they only consider one object class at a time and cannot make use of class
dependencies.

Attempts to take context into account using probabilistic appearance models,
e.g. by Torralba [25], were restricted to object–background interaction and do not
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capture relations between objects. Aiming at simultaneous multi-class detection,
Torralba et al. [26] have proposed to share features between different classes, but
this applies only to the class representations and does not allow one to base the
final decision on between-class dependencies.

To our knowledge, the only published work making use of inter-class depen-
dencies to improve object detection is by Rabinovich et al. [20]. Their method
segments the image and classifies all segments jointly based on a conditional
random field. However, this requires the object dependencies to be specified a-
priori, whereas our method learns the dependencies during the training process
to best reflect the a-posteriori beliefs.

3 Joint Multi-class Object Detection

The proposed method for joint object detection is applicable as a post-processing
operation to any of the single-class methods mentioned in the previous section.
We will therefore concentrate on this aspect and assume that routines to identify
candidate locations for K object classes ω1, . . . , ωK are given. We do not, how-
ever, assume that these routines are able to reliably judge if an object is present
at all or not, so in theory, even random sampling of locations or an exhaustive
search would be possible.

For all candidate regions, it is predicted whether they are correct or incorrect
hypotheses for the presence of their particular object class. In this way we reduce
the problem to a collection of binary classifications, but in contrast to existing
detection methods, the decision is based jointly on all object hypotheses in the
image, not only on each of them separately.

Following a machine learning approach, the system learns its parameters from
a set of training images Ii, i = 1, . . . , N , with known locations li1, . . . , l

i
ni

and
class labels for the ni objects present in Ii. For simplicity, we assume that there is
exactly one candidate region per class per image, writing xi := (Ii, li1, . . . , l

i
K) for

i = 1, . . . , N . This is not a significant restriction, since for missing classes we can
insert random or empty regions, and for classes with more than one candidate
region, we can create multiple training examples, one per object instance.

For every test image I we first predict class hypotheses and then, if necessary,
we use the same construction as above to bring the data into the form x =
(I, l1, . . . , lK). The class decisions are given by a vector valued function

f : I ×
K times

︷ ︸︸ ︷

L × · · · × L → R
K (1)

where I denotes the space of images and L denotes the set of representations
for objects, e.g. by their location and appearance. Each component fk of f
corresponds to a score how confident we are that the object lk is a correct
detection of an object of class ωk. If a binary decision is required, we use only
the sign of fk.
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3.1 Discriminative Linear Model

In practical applications, the training set will rarely be larger than a couple of
hundred or a few thousand examples. This is a relatively low number taking into
account that the space I × LK grows exponentially with the number of classes.
We therefore make use of a discriminative approach to classification, which has
shown to be robust against the curse of dimensionality. Following the path of
statistical learning theory, we assume f to be a vector-valued function that
is linear in a high-dimensional feature space H. Using the common notation
of reproducing kernel Hilbert spaces, see e.g. Schölkopf and Smola [21], each
component function fk of f can be written as

fk(x) = 〈 wk, φk(x) 〉H + bk (2)

where x = (I, l1, . . . , lK). The feature map φk : I×LK → H is defined implicitly
by the relation kk(x, x′) = 〈φk(x), φk(x′)〉H for a positive definite kernel function
kk. The projection directions wk ∈ H and the bias terms bk ∈ R parametrize f .
Note that we do not compromise our objective of learning a joint decision for all
classes by writing separate equations for the components of f , because each fk

is still defined over the full input space I × LK .

3.2 Learning Class Dependencies

In an ordinary SVM, only wk and bk are learned from training data whereas the
kernels kk and thereby the feature maps φk are fixed. In our setup, this approach
has the drawback that the relative importance of one class for another must be
fixed a priori in order to encode it in kk. Instead, we follow the more flexible
approach of multiple kernel learning (MKL) as developed by Lanckriet et al. [16]
and generalize it to vector valued output. MKL allows us to learn the relative
importance of every object class for the decision of every other class from the
data. For this, we parametrize kk =

∑K
j=0 βj

kκj , where the κj are fixed base
kernels. The weights βj

k are learned together with the other parameters during
the training phase. They have characteristics of probability distributions if we
constrain then by βj

k ∈ [0, 1] and
∑

j βj
k = 1 for all k.

We assume that each base kernels κj reflects similarity with respect only to
the object class ωj , and that κ0 is a similarity measure on the full image level.
Note, however, that this is only a semantic choice that allows us to directly
read off class dependencies. For the MKL training procedure, the choice of base
kernels and also their number is arbitrary.

Because the coefficients βj
k are learned from training data, they correspond

to a-posteriori estimates of the conditional dependencies between object classes:
the larger the value of βj

k the more the decision for a candidate region of class
ωk depends on the region for class ωj , where the dependency can be excitatory
or inhibitory. In contrast, βj

k = 0 will render the decision function for class
ωk independent of class ωj . This interpretation shows that the joint-learning
approach is a true generalization of image based classifiers (setting β0

k = 1 and
βj

k =0 for j �= 0) and of single class object detectors (βj
k = δjk).
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3.3 Vector Valued Multiple Kernel Learning

To learn the parameters of f we apply a maximum-margin training procedure.
As usual for SVMs, we formulate the criterion of maximizing the soft margin for
all training examples with slack variables ξi

k as the minimization over the norm
of the projection vector. Consequently, we have to minimize

1
2

K
∑

k=1

(

K
∑

j=0

βj‖wj
k‖2

Hk
+ C

n
∑

i=1

ξi
k

)

(3)

with respect to wj
k ∈ Hk, bk ∈ R, βj

k ∈ [0, 1] and ξi
k ∈ R

+, subject to

yi
k

(

K
∑

j=1

βk
j 〈 wk

j , φk(xi) 〉Hk
+ bj

)

≥ 1 − ξi
k for i = 1 . . . , N , k = 1, . . . , K,

where the training labels yi
k ∈ {±1} indicate whether the training location lik

in image Ii did in fact contain an object of class ωk, or whether it was added
artificially. The space Hj with scalar product 〈. , .〉Hj is implicitly defined by κj ,
and C is the usual slack penalization constant for soft-margin SVMs. Because
the constraints for different k do not influence each other, we can decompose
the problem into K optimization problems. Each of these is convex, as Zien and
Ong [30] have shown. We can therefore solve (3) by applying the multiple kernel
learning algorithm K times. The result of the training procedure are classifiers

fk(x) =
N

∑

i=1

K
∑

j=0

αi
kβk

j κj(x, xi) + bk for k = 1, . . . , K, (4)

where the coefficients αi
k are Lagrangian multiplier that occur when dualizing

Equation (3). Because the coefficients αi
k and βj

k are penalized by L1-norms in
the optimization step, they typically become sparse. Thus, in practice most of
the N · K terms in Equation (4) are zero and need not be calculated.

4 Experiments

For experimental evaluation we use the recent PASCAL VOC 2006 and VOC 2007
image datasets [8,9]. They contain multiple objects per image from sets of classes
that we can expect to be inherently correlated, e.g. tables/chairs and cars/buses,
or anti-correlated, e.g. cats/airplanes. Some examples are shown in Figure 1. In
VOC 2006, there are 5,304 images with 9,507 labeled objects from 10 classes.
VOC 2007 contains 9,963 images, with a total of 24,640 objects from 20 differ-
ent classes. Both datasets have pre-defined train/val/test splits and ground truth
in which objects are represented by their bounding boxes.



36 C.H. Lampert and M.B. Blaschko

4.1 Image Representation

We process the images following the well established bag-of-features processing
chain. At first, we extract local SURF descriptors [1] at interest point locations as
well as on a regular image grid. On average, this results in 16,000 local descriptors
per image. We cluster a random subset of 50,000 descriptors using K-means to
build a codebook of 3,000 entries. For every descriptor only its x, y position in
the image and the cluster ID of its nearest neighbor codebook entry are stored.

To represent a full image, we calculate the histogram of cluster IDs of all
feature points it contains. Similarly, we represent a region within an image by the
histogram of feature points within the region. These global or local histograms
are the underlying data representation for the generation of candidate regions
as well as for the class-decision step.

The joint decision function takes a set of hypothesized object regions as input.
To generate these for our experiments, we use a linear SVM approach similar to
Lampert et al. [15]: one SVM per object class is trained using the ground truth
object regions in the training set as positive training examples and randomly
sampled image boxes as negative training examples. The resulting classifier func-
tions are evaluated over all rectangular regions in the images, and for each image
and class, the region of maximal value is used as hypothesis.

4.2 Base Kernels and Multiple Kernel Learning

In the area of object classification, the χ2-distance has proved to be a powerful
measure of similarity between bag-of-features histograms, see e.g. [29]. We use
χ2 base kernels in the following way: for a sample x = (I, l1, . . . , lK), let h0(x)
be the cluster histogram of the image I and let hj(x) be the histogram for the
regions lj within I. We set

κk(x, x′) = exp
(

− 1
2γk

χ2(hk(x), hk(x′))
)

with χ2(h, h′) =
∑3000

c=1

(hc−h′c)2

hc + h′c ,

where hc denotes the c-th component of a histogram h. The normalization con-
stants γk are set to the mean of the corresponding χ2-distances between all
training pairs. With these kernels, we perform MKL training using the Shogun
toolbox. It allows efficient training up to tens of thousands of examples and tens
of kernels [23]. At test time, f is applied to each test sample x = (I, l1, . . . , lK),
and every candidate region lk is assigned fk(x) as a confidence score.

5 Results

The VOC 2006 and VOC 2007 datasets provide software to evaluate localization
performance as a ranking task. For each class, precision and recall are calculated
as follows: at any confidence level ν, the recall is the number of correctly pre-
dicted object locations with confidence at least ν divided by the total number
of objects in this class. The precision is the same number of correctly detected
objects, divided by the total number of boxes with a confidence of ν or more.
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Fig. 2. Typical Precision–Recall Curves for VOC 2006 (top) and VOC 2007 (bottom).
The blue (dashed) curve corresponds to the raw scores of the single-class candidate
prediction, the black (dark) curve to the filtered results of the jointly optimized system.

A predicted bounding box B is counted as correct, if its area overlap area(B∩G)
area(B∪G)

with a ground truth box G of that class is at least 50%. From the precision–recall
curves, an average precision score (AP) can be calculated by determining the
maximal recall in 11 subintervals of the recall axis and averaging them, see [9]
for details. Note, however, that AP scores are unreliable when they fall below
0.1 and should not be used to draw relative comparison between methods in this
case.

Figure 2 shows results for three classes each of the VOC 2006 and of the
VOC 2007 dataset. The plots contain the precision–recall curves of using either
the score that the single-class candidate search returns, or the output of the
learned joint-classifier as confidence values.

Table 1 lists the AP scores for all 30 classes in VOC 2006 and VOC 2007. In
addition to the single-class scores and the joint-learning score, the results of the
corresponding winners in the VOC 2006 and VOC 2007 challenge are included,
illustrating the performance of the best state-of-the-art systems.

5.1 Discussion

The plots in Figure 2 and the list of scores in Table 1 show that the joint
learning of confidence scores improves the detection results in the majority of
cases over the single-class hypothesis prediction, in particular in the range of
reliable values AP > 0.1. The increase in performance is more prominent in the
VOC 2006 dataset than in 2007 (e.g. Figure 2, left column). For several classes,
the system achieves results which are comparable to the participants of the VOC
challenges and it even achieves better scores in the three categories bus-2006,
sofa-2007 (Figure 2, center column) and dog-2007. The score for diningtable-
2007 is higher than the previous one as well, but it is unreliable. There are
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Table 1. Average Precision (AP) scores for VOC2006 (top) and VOC2007 (bottom)

VOC2006 bicycle bus car cat cow dog horse motorbike person sheep

single-class 0.351 0.040 0.110 0.079 0.032 0.038 0.019 0.086 0.005 0.108

jointly learned 0.411 0.245 0.144 0.099 0.098 0.089 0.045 0.369 0.091 0.091

VOC2006 best 0.440 0.169 0.444 0.160 0.252 0.118 0.140 0.390 0.164 0.251

VOC2007 aeroplane bicycle bird boat bottle bus car cat chair cow

single-class 0.160 0.144 0.097 0.020 0.001 0.174 0.120 0.228 0.006 0.053

jointly learned 0.169 0.162 0.052 0.019 0.005 0.168 0.126 0.188 0.009 0.055

VOC2007 best 0.262 0.409 0.098 0.094 0.214 0.393 0.432 0.240 0.128 0.140

table dog horse motorbike person plant sheep sofa train tv

single-class 0.049 0.150 0.032 0.207 0.116 0.004 0.092 0.113 0.101 0.055

jointly learned 0.101 0.165 0.048 0.219 0.089 0.023 0.092 0.165 0.118 0.042

VOC2007 best 0.098 0.162 0.335 0.375 0.221 0.120 0.175 0.147 0.334 0.289

some cases, in which both stages of the system fail to achieve a good detection
rate compared to the state-of-the-art, e.g. car-2006 or bottle-2007. Analyzing
the precision–recall curves shows this is typically due to a bad set of candidate
region. The maximum recall level in the examples is below 20% and 5% (Figure 2,
right column). One cannot hope to achieve better scores in these cases, because
the post-processing only assign a confidence to the object regions but cannot
create new ones. We expect that a better hypothesis generation step and a test
procedure predicting several candidate boxes per image would improve on this.

5.2 Dependency Graphs

Besides improving the localization performance, the multiple kernel learning also
predicts class-specific dependency coefficients βk

j that allow us to form a sparse
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Fig. 3. Automatically learned dependency graph between the classes in VOC 2007. An
arrow ωj → ωk means that ωj helps to predict ωk. This effect can be excitatory or
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shown). The score and width of the arrow indicates the relative weight βj

k/
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without the image component. Connections with a score below 0.04 have been omitted.



Joint Multi-class Object Detection 39

dependency graph. These dependencies are non-symmetric, in contrast to gener-
ative measures like co-occurrence frequencies or cross-correlation. Figure 3 shows
the automatically generated graph for VOC 2007. One can see that semantically
meaningful groups have formed (vehicles, indoors, animals), although no such
information was provided at training time.

6 Conclusions

We have demonstrated how to perform joint object-class prediction as a post-
processing step to arbitrary single-class localization systems. This allows the use
of class dependencies while remaining computationally feasible. The method is
based on a maximum margin classifier using a linear combination of kernels for
the different object classes. We gave an efficient training procedure based on
formulating the problems as a collection of convex optimization problems. For
each class, the training procedure automatically identifies the subset of object
classes relevant for the prediction. This provides a further speedup at test time
and allows the formation of an a posteriori dependency graph.

Experiments on the VOC 2006 and 2007 datasets show that the joint decision
is almost always able to improve on the scores that the single-class localiza-
tion system provided, resulting in state-of-the-art detection rates, if the set of
candidate regions allows so. The resulting dependency graph has a semantically
meaningful structure. Therefore, we expect that the learned dependency coeffi-
cients will be useful for other purposes as well, e.g. to generate class hierarchies.
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